一、什么是用户画像?如何分析用户画像?
用户画像又称用户角色,作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,用户画像在各领域得到了广泛的应用。
目前市场是分为 To C 和 To B 两类用户画像需求,网上传播的用户画像一般以 C 端为主,它们模版多,方法全,RFM 模型成熟,并逐渐衍生出一些用户洞察公司,帮助企业完善用户画像。但这些 C 端模版对于 To B 端的企业来说无法直接套用,并且两者用户画像研究群体不同,导致在洞察方法上也略有差异。
此处我以制作 To B 用户画像为例进行阐述,希望可以解决你的疑问,它的的主要内容包括:
1、用户基本信息
用户基本信息很好理解,B 端客户一般为企业,它的基本信息就包括企业信息,组织架构,公司特征等,这些信息对我们建构用户基本框架提供了很大的帮助。根据用户基本信息,可以将用户团队规模大致分为 10 人以下、20 人~50 人、50 人以上等类型。或者可以根据所在行业的核心关注指标来进行不同团队的划分。
此处,我们以 20 人~50 人的公司为例,模版中可以依次填入公司名称、公司特征、组织架构的信息。
完成基本信息的输入,20~50 人创业公司的基本面貌就可以清晰地展现在我们面前,这种信息类似于 C 端用户画像的信息,很好地解决了“用户是谁”这个问题,将一行行数据和文字具象化,让产研人员可以感受到活生生的用户,而不是陷入自我想象的循环圈。
2、购买决策链。
建立用户基本轮廓后,我们可以继续从用户决策链下手。如果我们能充分了解决策链上各个角色的影响力,以及他们对产品的需求,那么才能提高获得订单的成功率,进而完成我们对用户核心诉求的探索。
以蓝湖一个 PM 画像为例,Kevin 是产品负责人,在社区领域经验非常丰富。他们的产品节奏从来不以快为标准,而是以好为标准。目前,很注重流程的管理以及文档沉淀,深知这些是保证高品质输出产品的关键。希望能有一个 All-in-one 工具能更便捷的使用。
人数不同的公司,决策链的长短也有区别,小公司 PM 的影响力可以占到 70%,而中大型团队 PM 还有总监、VP、CEO 等关键角色。所以你可以根据不同的公司情况,有针对性地进行补充其他关键用户画像,完善决策链。
3、用户核心诉求。
在了解各个关键角色的用户画像之后,我们可以对决策者的核心诉求进行归纳总结;一方面,从使用者、决策者的双维度出发,帮助产品不断优化和迭代;另一方面,为客户精细化运营提供抓手和依据,实现产品增长目标,从而提高企业的市场占有率。
如果调研足够深入,甚至还可以得到一些用户的关键数据,例如 DAU、WAU 等,这部分数据对于你填充用户画像的最后一块空白非常有帮助。
在搜集以上信息结束之后,你可以根据在调研中发现的差异点进行个性化补充,比如重新进行用户分类,更改用户的公司规模,增加关键人物画像等。
洞察用户进而输出完整的用户画像报告这是我们每个人都必须了解的事情,无论你是产品、设计还是运营、销售,了解用户可以让我们更有针对性地帮助他们达成目标。
这个模版我已经上传至蓝湖的「超级文档」,大家可以在创建文档时直接选择,希望你能喜欢!
二、如何做“用户画像”?
首先讲一下么是用户画像,用户画像是通过用户调研去了解用户,根据他们的社会属性、生活习惯、消费行为等主要信息的数据之后,完美地抽象出一个用户的商业全貌。用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理。
构建用户画像有什么好处呢,用户画像可以让商家在产品设计的过程中能够更加关注在目标用户的洗好和行为来进行产品设计,而且用户画像作用不仅仅找到用户的主需求,很多隐形的需求都会被发掘出来。而且商家广告投放等方面,能进一步提升精准度,提高信息获取的效率,从而减少无作用的浪费。
最后是如何构建用户画像,要建立用户画像必须建立在真实数据的基础上,将构建用户画像平台所需的数据分成用户、商品、渠道三类,然后按产品需要,给不同的用户特征贴上合适的标签。标签需要精简易区分少交叉重叠,这样是为了方便数据统计,构建数据集合,后续进行数据挖掘和聚合分析。最终是用户画像的呈现,用户画像的呈现分为两个部分,一部分是显性的呈现,呈现的是用户的给俺个标签特点;另一部分是隐形的,呈现的是需要我们去分析的用户潜在需求。显性的标签就是用现在的特点需求。而这些隐形的标签所代表的需求可以为以后的产品发展起到指引的作用。
三、用户画像包含什么(客群画像的内容包括)
客户画像客户信息标签化,完美地抽象出一个客户的信息全貌,可以看作企业应用大数据的根基。客户画像的核心工作是为客户打标签,打标签的重要目的之一是为了让
用户画像是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。构建用户画像的核心工作即是给用户贴标签”,而标签是通过对用户信息
用户画像又称用户角色,作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,用户画像在各领域得到了广泛的应用。用户画像最初是在电商领域得到应用的,在
用户画像又称用户角色。Persona。作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,用户画像在各领域得到了广泛的应用。我们在实际操作的过程中往往
用户画像实际上是数据和文字,并不是图片。主要是指用户的基本信息,如性别,年纪,性格,爱好,职业等,另外,还包括一些习惯,比如上网时间,上网行为,操作
追灿数据认为用户画像有用处的维度是以需求为基础的,比如用户偏好价格分布、颜色分布、购买渠道分布、关注点分布等,这些维度更能帮助企业了解用户需求。
怎么描述消费者画像。谢谢。
对于大数据的消费人次,迫切需要解决消费者画像,通过大数据找到未来的发展逻辑。公司以优异和多样化产品,覆盖不同细分市场,得到国内消费者的普遍认可与赞同。
有专做pm视频教程的mtedu能看到。根据用户画像,能确定用户需求,然后能具体和精准化的策划产品、做内容和运营,降低投入成本,增加效果。画像内容包含用户来
给某一目标群体画像,这个画像是什么意思能否具体点举例说下比如对买童
目标用户画像是指用户的自然特征,包括年龄、性别、喜好、职业、职位、家庭等方面有的时候为了实现更好的推广,还涉及到一些用户的行为特征,如聚集在QQ
百度百科区域内人群属性特征,基于大数据人群属性模型的精准画像。性别、年龄、收入、婚姻等。通过互联网、云平台获取用户更为精准的反馈信息,进而快速分析
四、用户画像介绍
用户画像是指根据用户的属性、用户偏好、生活习惯、用户行为等信息而抽象出来的标签化用户模型。
通俗说就是给用户打标签,而标签是通过对用户信息分析而来的高度精炼的特征标识。通过打标签可以利用一些高度概括、容易理解的特征来描述用户,可以让人更容易理解用户,并且可以方便计算机处理。
标签的分类方法比较多样,可以按标签的产出方式分,也可以按实际业务分,也可以组合起来分类。
按产出方式来分的话:
1)事实统计类标签 例如近7日活跃时长、近7日活跃次数等等
2)事实规则类标签 例如消费活跃:近30天交易次数>=2
3)模型类标签 例如RFM模型,AARRR模型
4)算法类标签 例如根据用户购买的商品判断其购物性别、对某商品的偏好程度
按实际业务来分的话:
1)用户属性标签
2)用户消费标签
3)用户行为标签
4)风险控制标签
。。。
在互联网、电商领域用户画像常用来作为精准营销、推荐系统的基础性工作,其作用总体包括:
1)精准营销:根据历史用户特征,分析产品的潜在用户和用户的潜在需求,针对特定群体,利用短信、邮件等方式进行营销,提升营销效率和营销效果。
2)用户统计:根据用户的属性、行为特征对用户进行分类后,统计不同特征下的用户数量、分布;分析不同用户画像群体的分布特征。
3)数据挖掘:以用户画像为基础构建推荐系统、搜索引擎、广告投放系统,提升服务精准度。
4)服务产品:对产品进行用户画像,对产品进行受众分析,更透彻地理解用户使用产品的心理动机和行为习惯,完善产品运营,提升服务质量。
5)行业报告&用户研究:通过用户画像分析可以了解行业动态,比如人群消费习惯、消费偏好分析、不同地域品类消费差异分析
6)ABtest:用于创建ABtest实验,和实验效果分析
用户画像必须从实际业务场景出发,解决实际的业务问题,之所以进行用户画像,要么是获取新用户,要么是提升用户体验、或者挽回流失用户等具有明确的业务目标。
数据源的数据是标签构建的最底层,来源于各个业务端的数据,主要有离线和实时两大数据来源,一般的大数据架构会有流批处理的链路分别处理,也有流批一体的架构,数据产品可不重点关注。
数据层开始数据产品会比较关注,数据产品在设计标签时需要关注标签的生产在数据仓库的流转口径,特别是在定义原子标签的时候,需要深入理解业务,了解用户的来源,状态,订单的渠道,线上线下,订单状态等等。
标签层一般的,会按照上面说的实际业务分类进行标签的建设,一般构建原子标签就足够了,在服务层的标签工厂可以个性化的创建新的派生标签。
服务层主要包含两块,一个是画像平台的应用,一个是画像数据的统一API服务,给前台的营销系统、广告系统等提供标签分群数据支持。
以上是用户画像系统的基础概念,下一节我们了解下画像系统的难点之一:如何构建oneid?
五、什么是用户画像,一般用户画像的作用是什么?
用户画像是通过数据分析和挖掘从用户的各类数据中提取共性特点的过程。作为大数据的根基,用户画像完美地抽象出一个用户的信息全貌,为进一步精准、快速地分析用户行为习惯、消费习惯等重要信息,提供了足够的数据基础,奠定了大数据时代的基石。
用户画像是在解客户需求和消费能力,以及客户信用额度的基础上,寻找潜在产品的目标客户,并利用画像信息为客户开发产品。提到用户画像,很多品牌商都会提到全方位用户画像,其实全方位用户画像是一个广告宣传用语,根本不存数据可以全面描述用户,透彻了解用户。人是非常复杂的动物,信息纬度非常复杂,仅仅依靠外部信息来刻画客户内心需要根本不可能。
用户画像一词具有很重的场景因素,不同企业对于用户画像有着不同对理解和需求。举个例子,金融行业和汽车行业对于用户画像需求的信息完全不一样,信息纬度也不同,对画像结果要求也不同。每个行业都有一套适合自己行业的用户画像方法,但是其核心都是为客户服务,为业务场景服务。
六、什么是用户画像呢?一般用户画像的作用是什么
怎样为用户“画像”?
为用户画像的焦点工作就是为用户打“标签”,而一个标签通常是人为规定的高度精炼的特征标识,如年龄、性别、地域、用户偏好等,最后将用户的所有标签综合来看,基本就可以勾勒出该用户的立体“画像”了。
具体来讲,当为用户画像时,需要以下三个步骤:
首先,收集到用户所有的相关数据并将用户数据划分为静态信息数据、动态信息数据两大类,静态数据就是用户相对稳定的信息,如性别、地域、职业、消费等级等,动态数据就是用户不停变化的行为信息,如浏览网页、搜索商品、发表评论、接触渠道等;
其次,通过剖析数据为用户贴上相应的标签及指数,标签代表用户对该内容有兴趣、偏好、需求等,指数代表用户的兴趣程度、需求程度、购买概率等;
最后,用标签为用户建模,包括时间、地点、人物三个要素,简单来说就是什么用户在什么时间什么地点做了什么事。
如何利用用户画像进行精准营销?
消费方式的改变促使用户迫切希望尽快获取自己想要了解的信息,所以说,基于用户画像上的精准营销不管对企业还是对用户来说,都是有需求的,这会给双方交易带来极大便捷,也为双方平等沟通搭建了一个畅通平台。
何谓“用户画像”?
在互联网逐渐步入大数据时代后,不可避免的为企业及消费者行为带来一系列改变与重塑。其中最大的变化莫过于,消费者的一切行为在企业面前似乎都将是“可视化”的。随着大数据技术的深入研究与应用,企业的专注点日益聚焦于怎样利用大数据来为精准营销服务,进而深入挖掘潜在的商业价值。于是,“用户画像”的概念也就应运而生。
用户画像,即用户信息标签化,就是企业通过收集与分析消费者社会属性、生活习惯、消费行为等主要信息的数据之后,完美地抽象出一个用户的商业全貌,可以看作是企业应用大数据技术的基本方式。用户画像为企业提供了足够的信息基础,能够帮助企业快速找到精准用户群体以及用户需求等更为广泛的反馈信息。