一、什么叫互质数

互质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。

中文名

互质数

外文名

relatively

prime

分类

数学

归属

概念

包括

公因数只有1的两个非零自然数

概念

互质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。[1]

互质数具有以下定理:

(1)两个数的公因数只有1的两个非零自然数,叫做互质数;举例:2和3,公因数只有1,为互质数;

(2)多个数的若干个最大公因数只有1的正整数,叫做互质数;

(3)两个不同的质数,为互质数;

(4)1和任何自然数互质。两个不同的质数互质。一个质数和一个合数,这两个数不是倍数关系时互质。不含相同质因数的两个合数互质;

(5)任何相邻的两个数互质;

(6)任取出两个正整数他们互质的概率(最大公约数为一)为6/π^2。

表达运用

这里所说的“两个数”是指除0外的所有自然数。“公因数只有

1”,不能误说成“没有公因数。”三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不是两两互质的。如6、8、9。

两个整数(正整数)(N),除了1以外,没有其他公约数时,称这两个数为互质数.互质数的概率是6/π^2。互质的两个数相乘,所得的数不一定是合数。

因为一和任何一个非零的自然数互质,一乘任何非零自然数,所得的积不一定是合数。如1与17互质,1×17=17,17不是合数质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。

中文名

互质数

外文名

relatively

prime

分类

数学

归属

概念

包括

公因数只有1的两个非零自然数

概念

互质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。[1]

互质数具有以下定理:

(1)两个数的公因数只有1的两个非零自然数,叫做互质数;举例:2和3,公因数只有1,为互质数;

(2)多个数的若干个最大公因数只有1的正整数,叫做互质数;

(3)两个不同的质数,为互质数;

(4)1和任何自然数互质。两个不同的质数互质。一个质数和一个合数,这两个数不是倍数关系时互质。不含相同质因数的两个合数互质;

(5)任何相邻的两个数互质;

(6)任取出两个正整数他们互质的概率(最大公约数为一)为6/π^2。

表达运用

这里所说的“两个数”是指除0外的所有自然数。“公因数只有

1”,不能误说成“没有公因数。”三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不是两两互质的。如6、8、9。

两个整数(正整数)(N),除了1以外,没有其他公约数时,称这两个数为互质数.互质数的概率是6/π^2。互质的两个数相乘,所得的数不一定是合数。

因为一和任何一个非零的自然数互质,一乘任何非零自然数,所得的积不一定是合数。如1与17互质,1×17=17,17不是合数

二、互质数是什么年级学的

五年级:

互质数:两个数都是质数且两数的公因数只有1.

合数:这个自然数的因数有1和他本身,还有其他因数,简单来说,有因数2个以上(包括2个).

三、互质数的概念

教材对互质数是这样定义的:最大的公因数是1的两个自然数,叫做互质数。又是两个数是最大公因数只有1的两个数是互质数。

这里所说的“两个数”是指除0外的所有自然数。

“公因数只有 1”,不能误说成“没有公因数。”

四、什么是互质数?

互质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。互质数具有以下定理:

1、两个数的公因数只有1的两个非零自然数,叫做互质数;举例:2和3,公因数只有1,为互质数;

2、多个数的若干个最大公因数只有1的正整数,叫做互质数;

3、两个不同的质数,为互质数;

4、1和任何自然数互质。两个不同的质数互质。一个质数和一个合数,这两个数不是倍数关系时互质。不含相同质因数的两个合数互质;

5、任何相邻的两个数互质;

6、任取出两个正整数他们互质的概率(最大公约数为一)为6/π^2。

扩展资料:

根据互质数的定义,可总结出一些规律,利用这些规律能迅速判断一组数是否互质。

1、两个不相同的质数一定是互质数。如:7和11、17和31是互质数。

2、两个连续的自然数一定是互质数。如:4和5、13和14是互质数。

3、相邻的两个奇数一定是互质数。如:5和7、75和77是互质数。

4、1和其他所有的自然数一定是互质数。如:1和4、1和13是互质数。

5、两个数中的较大一个是质数,这两个数一定是互质数。如:3和19、16和97是互质数。

6、两个数中的较小一个是质数,而较大数是合数且不是较小数的倍数,这两个数一定是互质数。如:2和15、7和54是互质数。

7、较大数比较小数的2倍多1或少1,这两个数一定是互质数。如:13和27、13和25是互质数。

参考资料来源:百度百科-互质数

五、互质数的定义

互质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。

这里所说的“两个数”是指除0外的所有自然数。“公因数只有 1”,不能误说成“没有公因数。”

三个或三个以上自然数互质有两种不同的情况:

一种是这些成互质数的自然数是两两互质的。如2、3、5。

另一种不是两两互质的。如6、8、9。 两个整数(正整数)(N),除了1以外,没有其他公约数时,称这两个数为互质数.互质数的概率是6/π^2。互质的两个数相乘,所得的数不一定是合数。

扩展资料

互质数的定理:

1、两个数的公因数只有1的两个非零自然数,叫做互质数;举例:2和3,公因数只有1,为互质数。

2、多个数的若干个最大公因数只有1的正整数,叫做互质数。

3、两个不同的质数,为互质数。

4、1和任何自然数互质。两个不同的质数互质。一个质数和一个合数,这两个数不是倍数关系时互质。不含相同质因数的两个合数互质。

5、任何相邻的两个数互质。

参考资料来源:百度百科——互质数

六、什么是互质数

互质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。

互质数具有以下定理:

(1)两个数的公因数只有1的两个非零自然数,叫做互质数;举例:2和3,公因数只有1,为互质数;

(2)多个数的若干个最大公因数只有1的正整数,叫做互质数;

(3)两个不同的质数,为互质数;

(4)1和任何自然数互质。两个不同的质数互质。一个质数和一个合数,这两个数不是倍数关系时互质。不含相同质因数的两个合数互质;

(5)任何相邻的两个数互质;

(6)任取出两个正整数他们互质的概率(最大公约数为一)为6/π^2。

扩展资料:

1和任何数都成倍数关系,但和任何数都互质。因为1的因数只有1,而互质数的原则是:只要两数的公因数只有1时,就说两数是互质数。因为1只有一个因数所以1既不是质数(素数),也不是合数,无法再找到1和其他数的别的公因数了。1和-1与所有整数互素,而且它们是唯一与0互素的整数。

互质数的写法:如c与m互质,则写作(c,m)=1。

小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。”

这里所说的“两个数”是指自然数。

“公约数只有 1”,不能误说成“没有公约数。”

这里有一个误区,认为0不与任何数互质。严格地按照互质的定义来看0与1,-1均互质,通过任意有理数的表示方式a/b(a,b互质且b为正整数),同样可以得出0与1,-1均必须互质,否则0不是有理数。

参考资料来源:百度百科-互质数

互质数的概念