一、什么是方程的增根
1、增根是在方程变形时,产生不适合原方程的根,这种根叫做原方程的增根。
2、如果一个分式方程的根,能使此方程的公分母为零,这个根就是原方程的增根。
3、增根是在将方程式进行变形之后所产生的情况,在严格的变形下定义域不发生变化,则不会产生增根,变形之后定义域扩大是造成增根的根本原因。
二、什么是方程有增根?
增根
在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根。
如果一个分式方程的根能使此方程的公分母为零,那么这个根就是原方程的增根。
增根的产生
增根是在将方程式进行变形之后产生的情况,其实最严格的变形是不会产生增根的,因为定义域不发生变化,但一般情况下,方程在经过变形之后定义域发生了变化。如:(x+1)/(x-1)=0的定义域是x≠1,经过变形后得到的方程是(x+1)(x-1)=0,这个时候就将定义域扩大到了R,这就是造成增根的根本原因。
简单地说,定义域的变化造成方程根的变化,计算过程将定义域扩大的话就造成增根,计算过程将定义域缩小的话就造成失根;不改变定义域的话根的情况就不会有变化。
三、方程有增根是什么意思
增根(extraneous root ),在分式方程化为整式方程的过程中,若整式方程的根使最简公分母为0,(根使整式方程成立,而在分式方程中分母为0)那么这个根叫做原分式方程的增根.
对于分式方程,当分式中分母的值为零时,分式方程无意义,所以分式方程不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.
简介
在分式方程化为整式方程的过程中,若整式方程的根使最简公分母为0,(根使整式方程成立,而在分式方程中分母为0)那么这个根叫做原分式方程的增根.
举例
x/(x-2)-2/(x-2)=0
去分母,x-2=0
x=2
但是X=2使分母等于0(无意义),所以X=2是增根.
分式方程两边都乘以最简公分母化分式方程为整公分母的值不为0,则此解是分式方程的解,若最简公分母的值为0,则此解是增根.
例如
设方程 A(x)=0 是由方程 B(x)=0 变形得来的,如果这两个方程的根完全相同(包括重数),那么称这两个方程等价.如果 x=a 是方程 A(x)=0 的根但不是B(x)=0 的根,称 x=a 是方程的增根;如果x=b 是方程B(x)=0 的根但不是A(x)=0 的根,称x=b 是方程B(x)=0 的失根.
四、什么叫方程的增根?
增根,是指方程求解后得到的不满足题设条件的根。一元二次方程与分式方程和其它产生多解的方程在一定题设条件下都可能有增根。
在分式方程化为整式方程的过程中,分式方程解的条件是使原方程分母不为零。若整式方程的根使最简公分母为0,(根使整式方程成立,而在分式方程中分母为0)那么这个根叫做原分式方程的增根。
方程的验根
求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根。验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。否则这个根就是原分式方程的根。若解出的根都是增根,则原方程无解。
如果分式本身约分了,也要代入进去检验。在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解。