一、所有几何图形的面积,周长,体积,表面积的公式分别是什么?
高中数学合集百度网盘下载
链接:
?pwd=1234
提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集
二、旋转体侧面积公式是什么
旋转体侧面积公式是S=2π∫(1,t)(t-x)/x²dx+2π∫(t,2)(x-t)/x²dx。一条平面曲线绕着所在的平面的一条定直线旋转所形成的曲面叫作旋转面;该直线叫做旋转体的轴;封闭的旋转面围成的几何体叫作旋转体。
圆柱体是旋转体的一种,一个长方形以一边为轴顺时针或逆时针旋转一周,所经过的空间叫做圆柱体。以一个圆为底面,上或下移动一定的距离,所经过的空间叫做圆柱体。生活中的旋转体有风车、车轮、摩天轮、水磨等。表面积是指所有立体图形的所能触摸到的面积之和。
三、旋转体侧面积
旋转体侧面积公式是:2π∫(1,t)(t-x)/x^2dx+2π∫(t,2)(x-t)/x^2dx。
1、根据定积分公式可得:2π∫(1,t)(t-x)/x^2dx+2π∫(t,2)(x-t)/x^2dx。
2、一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;该定直线叫做旋转体的轴;封闭的旋转面围成的几何体叫作旋转体。
3、表面积是指所有立体图形的所能触摸到的面积之和。球体表面积计算公式为:S=4πR^2。
4、定积分就是求函数f(X)在区间[a,b]中图线下包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。
5、定积分是把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。习惯上,我们用等差级数分点,即相邻两端点的间距Δx是相等的。但是必须指出,即使Δx不相等,积分值仍然相同。我们假设这些“矩形面积和”S=f(x1)Δx1+f(x2)Δx2+……f[x(n-1)]Δx(n-1),那么当n→+∞时,Δx的最大值趋于0,所以所有的Δx趋于0,所以S仍然趋于积分值。
四、旋转体的侧面积公式是 ∫2πf(x)* √(1+[f'(x)]^2 )dx。为什么不能用 ∫2πf
dx对应的切线长比f(x)长更接近对应的曲线弧长,所以用切线长度来计算。
五、高数问题,用微元法求旋转体的侧面积怎么求,我想要详细的推倒过程,谢谢!!!
把旋转体分割成任意小的小块,每一小块可以看成曲边圆柱体。
假设函数y=f(x)≥0在x=a,x=b之间的曲线绕x轴旋转。
则这是的体积微元为2πf(x)√{1+[f'(x)]²}dx
其中2πf(x)是曲边圆柱体的底面周长,高为弧长√{1+[f'(x)]²}dx
所以旋转体的侧面积为:
S=∫[a,b] 2πf(x)√{1+[f'(x)]²}dx
扩展资料
就“微元法”的应用技巧而言,最为关键的是要掌握好换“元”的技巧。因为通常的解题中所直接选取的“微元”并不一定能使“权函数” 满足形如(4)式所示的“平权”的条件,这将会给接下来的叠加演算带来困难。
所以,必须运用换“元”的技巧来改变“权函数” ,使之具备形如(4)式的“平权性”特征以遵从取元的“平权性原则”。
最常见的换“元”技巧有如下几种
1、“时间元”与“空间元”间的相互代换(表现时、空关系的运动问题中最为常见);
2、“体元”、“面元”与“线元”间的相互代换(实质上是降“维”);
3、“线元”与“角元”间的相互代换(“元”的表现形式的转换);
4、“孤立元”与“组合元”间的相互代换(充分利用“对称”特征)。
参考资料来源:百度百科-微元法
六、求旋转体的体积与侧面积。
例如考虑y=f(x)在x=a,x=b围成的区域绕x轴旋转一周的体积公式为v=∫[a,b]
πf²(x)dx
所以由y=f(x),
y=g(x)在x=a,
x=b围成的区域绕x轴一周的体积公式为v=∫[a,b]
[πf²(x)-πg²(x)d]x,假设
f(x)≥g(x)
而在计算这种体积的时候一般不能用∫[a,b]
π[f(x)-g(x)]²dx计算
拿个最简单的例子来讲
f(x)=2,g(x)=1跟x=1,x=2为成的区域绕x轴旋转一周的体积计算中,所形成的立体是个去心圆柱。
∫[1,2]
πf²(x)dx表示底面半径为2,高为1的圆柱体体积,
∫[1,2]
πg²(x)dx表示底面半径为1,高为1的圆柱体体积,
v=∫[1,2]
[πf²(x)-πg²(x)d]x表示所求的去心圆柱的体积
而∫[1,2]
π[f(x)-g(x)]²dx=∫[1,2]
π1²dx表示的是底面半径为1,高为1的圆柱体积,
此时f(x)-g(x)形成了一个新的曲线,它到x轴的距离刚好和f(x)与g(x)的距离一致!
而∫[a,b]
π[f(x)-g(x)]²dx计算的刚好是这条新的曲线绕x轴一周的旋转体体积!
显然,两种方法计算出来的旋转体是完全不一样的!