一、对于正数,其原码、反码、补码是相同的吗
是的,对于正数来说,其二进制原码,反码,补码均为相同的,为原码的形式;对于负数来说,其反码为符号位保持不变,其余各位取反,其反码为符号位保持不变,其余各位取反后再在最后一位上加1.例如:十进制数+18=二进制数01001...
二、正整数的原码,补码都是一样的吗?零的原、补码是多少?
在计算机系统中,数值,一律采用补码表示和存储。
原码反码,是没有任何用处的。在计算机中,它们也都不存在。
相同、或不相同,又有什么意义呢?
---------------------
补码,其实,它就是一个【代替负数】的正数。
使用了补码之后,在计算机中,就没有负数了。
顺便,也就消除了减法运算。
那么,计算机只需配置一个加法器,就可以走遍天下了。
---------------------
补码(即一个正数),怎么就能【代替负数】呢?
理论基础在于:计数系统的周期性。
比如,2 位 10 进制数(0~99),计数周期就是 10^2 = 100。
那么: 25 - 1 = 24
25 + 99 = (一百) 24
只要你:舍弃进位,仅保留 2 位数,99 就能代替-1。
同理,98 也能代替-2。
。。。
这些正数,就称为“负数的补数”。
变换公式: 负数的补数 = 负数 + 周期。
这公式,小学生,都可以推导出来。
另外还有:
时钟,时针倒拨 3 小时、正拨 9 小时,等效吧? 周期是 12。
三角函数,-π/2、+3π/2,正负两种角度,也等效,周期是 2π。
。。。
正数负数之间的变换公式,都是: 正数 = 负数 + 周期。
反之,也成立: 负数 = 正数-周期。
---------------------
计算机中,8 位 2 进制数,周期就是 2^8 = 256。
-1 的补码,就是:-1 + 256 = 255 = 1111 1111(二进制)。
-2 的补码,就是:254 = 1111 1110(二进制)。
。。。
求补码,用“负数数值”,直接就能求出补码。
不必经过“原码反码取反加一符号位不变”。
数学不好的老外,才需要弄哪些骚操作!
---------------------
只有负数,才需要变换成补码(正数)。
正数,不需要变换,也不允许变换,必须直接去相加运算。
所以,正数,它就没有补码。
有人说:正数的。。。都相同。
这就是被老外带到沟里去了。
原码反码,都是不存在的,哪还有什么相等!
三、二进制中正数的原码与补码相同吗?
二进制中,正数的原码与补码相同,负数是除符号位不变,其他位求反加1。
1、二进制
二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。
20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,因为数字计算机只能识别和处理由‘0’.‘1’符号串组成的代码。其运算模式正是二进制。19世纪爱尔兰逻辑学家乔治布尔对逻辑命题的思考过程转化为对符号"0''.''1''的某种代数演算,二进制是逢2进位的进位制。0、1是基本算符。因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现。
2、表示方法
二进制数据也是采用位置计数法,其位权是以2为底的幂。例如二进制数据110.11,逢2进1,其权的大小顺序为2²、2¹、2º、 、 。对于有n位整数,m位小数的二进制数据用加权系数展开式表示,可写为:
二进制数据一般可写为:
【例1102】将二进制数据111.01写成加权系数的形式。
解:
二进制和十六进制,八进制一样,都以二的幂来进位的。