一、混沌学是个什么学科?它代表什么?
混沌学也叫非线性动力学,是目前比较前沿的学科,属于数学领域,在其他各学科有着非常诱人的应用前景
目前还没有关于混沌的统一定义,大体是说一个确定性的系统会导致“随机”的现象。。。
相对论消除了关于绝对空间与时间的幻想;
量子力学则消除了关于可控测量过程的牛顿式的梦;
而混沌则彻底消除了拉普拉斯关于决定论式可预测性的幻想。
- J. Ford
分享几个混沌学里的几个图:
(1) 抛物线映射分岔图 (MATLAB / 1图)
(2) LORENZ吸引子(Excel / 4图)
二、混沌数学是什么?
什么是混沌数学
要弄明白不可预言性如何可以与确定论相调和,可以来看看 一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一 个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的, 水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。 这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。
假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来, 通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时 间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打 开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会 成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断 的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多 分钟内听不出任何明显的模式出现。
1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生 组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时 候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录 水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发 现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻, 你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是 0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒 后落下(这些数只是为了便于说明问题)。事实上,如果你精确地知 道头3滴水的滴落时刻,你就可以预言系统的全部未来。
那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何物理系统中所作出的最精确的 测量,对大约10位或12位小数来说是正确的。但拉普拉斯的陈述 只有在我们使测量达到无限精度(即无限多位小数,当然那是办不 到的)时才正确。在拉普拉斯时代,人们就已知道这一测量误差问 题,但一般认为,只要作出初始测量, 比如小数点后10位,所有相 继的预言也将精确到小数点后10位。误差既不消失,也不放大。 不幸的是,误差确实放大,这使我们不能把一系列短期预言串 在一起,得到一个长期有效的预言。例如,假设我知道精确到小数 点后10位的头3滴水的滴落时刻,那么我可以精确到小数点后9 位预言下一滴的滴落时刻,再下一滴精确到8位,以此类推。误差 在每一步将近放大10倍,于是我对进一步的小数位丧失信心。所 以,向未来走10步,我对下一滴水的滴落时刻就一无所知了。(精 确的位数可能不同:它可能使每6滴水失去1位小数的精度,但只 要取60滴,同样的问题又会出现。)
这种误差放大是使拉普拉斯完全确定论破灭的逻辑缺陷。要 完善整个测量根本做不到。假如我们能测量滴落时刻到小数点后 100位,我们的预言到将来100滴(或用较为乐观的估计,600滴) 时将失败。这种现象叫“对初始条件的敏感性”,或更非正式地叫 “蝴蝶效应”(当东京的一只蝴蝶振翅时,可能导致一个月后佛罗里 达的一场飓风)。它与行为的高度不规则性密切相关。任何真正规 则的东西,据定义都是完全可预言的。但对初始条件的敏感性却使 行为不可预言—从而不规则。因此,呈现对初始条件敏感性的系 统被称为混沌系统。混沌行为满足确定性的定律,但它又如此不规 则,以至在未受过训练的眼睛看来显得杂乱无章。混沌不仅仅是复 杂的、无模式的行为,它要微妙得多。混沌是貌似复杂的、貌似无模 式的行为,它实际上具有简单的、确定性的解释。
混沌的发现是由许多人(多得在此无法一一列举)作出的。它 的出现,是由3个相互独立的进展汇合而成的。第一个是科学注重 点的变化,从简单模式(如重复的循环)趋向更复杂的模式。第二个 是计算机,它使得我们能够容易和迅速地找到动力学方程的近似 解。第三个是关于动力学的数学新观点— 几何观点而非数值观 点。第一个进展提供了动力,第二个进展提供了技术,第三个进展 则提供了认识。
动力学的几何化发端于大约100年前。法国数学家昂利·庞 加莱(Henri Poincare)是一个独立独行的人(如果有的话),但他非 常杰出,以致他的许多观点几乎一夜之间就成了正统的观点,当时 他发明了相空间概念,这是一个虚构的数学空间,表示给定动力学 系统所有可能的运动。为了举一个非力学的例子,让我们来考虑猎 食生态系统的群体动力学。此系统中捕食者是猪,被捕食者是块菌 (一种味道奇特、辛辣的真菌)。我们关注的变量是两个群体的规模 ——猪的数目和块菌的数目(两者都相对于某个参考值,如100 万)。这一选择实际上使得两个变量连续,即取带小数位的实数值, 而不取整数值。例如,假如猪的参考数目是100万,则17439头猪 相当于值0.017439。现在,块菌的自然增长依赖于有多少块菌以及 猪吃块菌的速率:猪的增长依赖于猪的头数以及猪吃的块菌数目。 于是每个变量的变化率都依赖于这两个变量,我们可把注意力转 向群体动力学的微分方程组。我不把方程列出来,因为在这里关键 不是方程,而是你用方程干什么。
这些方程原则上确定任何初始群体值将如何随时间而变化。 例如,假使我们从17439头猪和788444株块菌开始,则你对猪变 量引入初始值0.017439,对块菌变量引入初始值0.788444,方程 会含蓄地告诉你这些数将如何变化。困难的是使这种含蓄变得清 晰:求解方程。但在什么意义上求解方程呢? 经典数学家的自然反 应是寻找一个公式,这个公式精确地告诉我们猪头数和块菌株数 在任何时刻将是多少。不幸的是,此种“显式解”太罕见,几乎不值 得费力去寻找它们,除非方程具有很特殊的、受限制的形式。另一 个办法是在计算机上求近似解,但那只能告诉我们这些特定韧始 值将发生什么变化,以及我们最想知道的许多不同的初始值将发 生什么变化。
庞加莱的思想是画一幅图,这幅图显示所有初始值所发生的 情况。系统的状态--在某一时刻两个群体的规模——可以表示 成平面上的点,用坐标的方法即可表示。例如,我们可能用横坐标 代表猪头数,用纵坐标代表块菌株数。上述初始状态对应于横坐标 是0.017439、纵坐标是0.788444的点。现在让时间流逝。坐标按 照微分方程表达的规则从一个时刻变到下一个时刻,于是对应点 运动。依动点划出一条曲线;那条曲线是整个系统未来状态的直观 表述。事实上,通过观察这条曲线,不用搞清楚坐标的实际数值,你 就可以“看出”重要的动力学特征。
三、混沌数学是什么?
混沌是决定论系统所表现的随机行为的总称。它的根源在于非线性的相互作用。
所谓"决定论系统"是指描述该系统的数学模型是不包含任何随机因素的完全确定的方程。
自然界中最常见的运动形态往往既不是完全确定的,也不是完全随机的,关于混沌现象的理论,为我们更好地理解自然界提供了一个框架。
混沌的数学定义有很多种。例如,正的"拓扑熵"定义拓扑混沌;有限长的"转动区间"定义转动混沌等等。这些定义都有严格的数学理论和实际的计算方法。不过,要把某个数学模型或实验现象明白无误地纳入某种混沌定义并不容易。因此,一般可使用下面的混沌工作定义。
若所处理的动力学过程是确定的,不包含任何外加的随机因素;单个轨道表现出像是随机的对初值细微变化极为敏感的行为,同时一些整体性的经长时间平均或对大量轨道平均所得到的特征量又对初值变化并不敏感;加之上述状态又是经过动力学行为和一系列突变而达到的。那么,你所研究的现象极有可能是混沌。
四、混沌数学是什么,用于哪里?
假如你让水流得再快一些,得到4滴节律,水滴再快一点,产生8滴节律。水滴重复序列的长度不断加倍。在数学模型里,这一过程无限继续下去,具有16,32,64等水滴的节律群。但产生每次相继周期倍化的流速变得愈来愈细微;并存在一个节律群大小在 此无限频繁加倍的流速。此时此刻,没有任何水滴序列完全重复同一模式。这就是混沌。
五、混沌学的简介?
混沌理论(Chaos theory)是在数学和物理学中,研究非线性系统在一定条件下表现出的“混沌”现象的理论。背景 1963年美国气象学家爱德华·诺顿·洛伦茨提出混沌理论(Chaos),非线性系统具有的多样性和多尺度性。混沌理论解释了决定系统可能产生随机结果。理论的最大的贡献是用简单的模型获得明确的非周期结果。在气象、航空及航天等领域的研究里有重大的作用。混沌理论认为在混沌系统中,初始条件十分微小的变化,经过不断放大,对其未来状态会造成极其巨大的差别。我们可以用在西方世界流传的一首民谣对此作形象的说明。这首民谣说:丢失一个钉子, 坏了一只蹄铁; 坏了一只蹄铁, 折了一匹战马; 折了一匹战马, 伤了一位骑士; 伤了一位骑士, 输了一场战斗; 输了一场战斗, 亡了一个帝国。马蹄铁上一个钉子是否会丢失,本是初始条件的十分微小的变化,但其“长期”效应却是一个帝国存与亡的根本差别。这就是军事和政治领域中的所谓“蝴蝶效应”。混沌系统对外界的刺激反应,比非混沌系统快。布莱德福所发明之定律为书目计量学三大定律,布莱德福以应用地球物理学为例:每区的期刊数之比9:59:258 视为10:50:250 等于1:5:25所以,推论出其公式为“y=x1+x2+x3...+xn+E”。E 即 error 混沌不明的变因,如同噪声是无法解释的。 文献计量学为何用混沌理论(chaos)? 布莱德福试图想了解这有没有法则,他研究期刊生产力的分布比例约为1:n:n^2,它分成三区:核心区、相关区、边缘区,不同区期刊数量都是差不多。核心期刊,产出的论文数量,可能一种期刊抵过其他50种期刊。浑沌理论亦可以运用在知识管理上,当可以解释的因素之下,不可解释的便是E,而创造就是在E上面所产生的。知识管理者所求的就是创新,在创新的空间上就是隐性知识,掌握住隐性知识便能够激发一个组织的创造力。应用 混沌理论在许多科学学科中得到广泛应用,包括:数学,生物学,信息技术,经济学,工程学,金融学,哲学,物理学,政治学,人口学,心理学和机器人学多种系统的浑沌状态在实验室中得到观察,包括电路,激光,流体的动态,以及机械和电磁装置。在自然中进行的有对天气,卫星运动,天体磁场,生态学中的种群增长,神经元中的动作电位和分子振动的观察。浑沌理论最成功的应用之一在于生态学中的雷克动态综合模型,在其中显示了受密度制约之下的种群增长如何引致混沌状态。混沌动力学 浑沌系统有三种性质: 1.受初始状态影响 2.是拓扑混合 3.周期轨道稠密希望帮到你啦~
六、什么是混沌学?
这个问题听着就好高深,我在科邦实验室的公众号上看到是这样解释的
混沌理论(Chaos theory)是一种兼具质性思考与量化分析的方法,用来探讨动态系统中(如:人口移动、化学反应、气象变化、社会行为等)必须用整体、连续的而不是单一的数据关系才能加以解释和预测的行为,其本质是系统的长期行为对初始条件的敏感性。
如我们经常到的蝴蝶效应,“一只蝴蝶在巴西煽动翅膀,可能会在德州引起一场龙卷风”,其原因就是蝴蝶扇动翅膀的运动,导致其身边的空气系统发生变化,并产生微弱的气流,而微弱的气流的产生又会引起四周空气或其他系统产生相应的变化,由此引起一个连锁反应,最终导致其他系统的极大变化,这就是混沌。
混沌学是一门非常重要的学说,它的传道士宣称,混沌应属于20世纪3大科学之一。相对论排除了绝对时空观的牛顿幻觉,量子论排除了可控测量过程中的牛顿迷梦,混沌则排除了拉普拉斯可预见性的狂想。
混沌学的基本观点即为积累效应和度,即事情都不是偶然发生的,是各种事情的积累才导致了另一个事情的发生,就像蝴蝶效应,如果我们在巴西看到了蝴蝶煽动翅膀,我们就可以做出预言,德州会出现龙卷风,这就是我们通过对大数据的研究,经过了混沌学的启发做出的预测,也就是预言。
这样解释过后听起来就有一点好理解啦!