一、根号2是多少 怎么算 要过程

√2= 1.4142135623731 ……

√2 是一个无理数,它不能表示成两个整数之比,是一个看上去毫无规律的无限不循环小数早在古希腊时代,人们就发现了这种奇怪的数,这推翻了古希腊数学中的基本假设,直接导致了第一次数学危机。

其实就是公式的逆运用(a+b)^2=a^2+2ab+b^2

例:1^2=1

(1+0.4)^2=1+0.8+0.04

(1.4+0.1)^2=1.96+0.028+0.0001

以此类推……

扩展资料:

常用的平方根:

√0 = 0(表示根号0等于0,下同)

√1 = 1

√2 = 1.4142135623731

√3 = 1.73205080756888

√4 = 2

√5 = 2.23606797749979

√6 = 2.44948974278318

√7 = 2.64575131106459

√8 = 2.82842712474619

√9 = 3

√10 = 3.16227766016838

√11 = 3.3166247903554

√12 = 3.46410161513775

二、根号二十等于多少

显然20=4*5

所以20不是完全平方数

根号20=2根号5

如果要得到近似值

使用计算器得到根号20约等于4.472

三、根号二到根号二十的值

根号二到根号二十的值如下:

扩展资料:

一个数的2次方根称为平方根;3次方根称为立方根。各次方根统称为方根。求一个指定的数的方根的运算称为开方。一个数有多少个方根,这个问题既与数的所在范围有关,也与方根的次数有关。

在实数范围内,任一实数的奇数次方根有且仅有一个,例如8的3次方根为2,-8的3次方根为-2 。

正实数的偶数次方根是两个互为相反数的数,例如16的4次方根为2和-2。

负实数不存在偶数次方根。

零的任何次方根都是零。

在复数范围内,无论n是奇数或偶数,任一个非零的复数的n次方根都有n个。