一、某商店经销一种泰山旅游纪念品,4月的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售

解:设该种纪念品4月份的销售价为x元,根据题意得

解之得x=50 经检验x=50是所得方程的解

∴该种纪念品4月份的销售价格是50元.

(2)由(1)知4月份销售件数为 =40件,∴四月份每件盈利 =20元

5月份销售件数为40+20=60件,且每件售价为50×0.9=45,每件比4月份少盈利5元,为15元,所以5月份销售这种纪念品获利60×15=900元.

(1)等量关系为:4月份营业数量=5月份营业数量-20;

(2)算出4月份的数量,进而求得成本及每件的盈利,进而算出5月份的售价及每件的盈利,乘以5月份的数量即为5月份的获利.

二、某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个;第二周若按每个10元的价

考点:一元二次方程的应用.

专题:销售问题.

分析:根据纪念品的进价和售价以及销量分别表示出两周的总利润,进而得出等式求出即可.

解答:解:由题意得出:200×(10﹣6)+(10﹣x﹣6)(200+50x)+[(4﹣6)(600﹣200﹣(200+50x)]=1250,

即800+(4﹣x)(200+50x)﹣2(200﹣50x)=1250,

整理得:x2﹣2x+1=0,

解得:x1=x2=1,

∴10﹣1=9,

答:第二周的销售价格为9元.

点评:此题主要考查了一元二次方程的应用,根据已知表示出两周的利润是解题关键. 

是否可以解决您的问题?