一、笛卡尔的爱心函数是什么?
r=a(1-sinθ)。
1、直角坐标方程
心形线的平面直角坐标系方程表达式分别为x^2+y^2+a*x=a*sqrt(x^2+y^2)和x^2+y^2-a*x=a*sqrt(x^2+y^2)。
2、极坐标方程
水平方向:ρ=a(1-cosθ)或ρ=a(1+cosθ)(a>0)
垂直方向:ρ=a(1-sinθ)或ρ=a(1+sinθ)(a>0)
极坐标系下绘制r = Arccos(sinθ),我们也会得的一个漂亮的心形线。数学爱好者创作的平面直角坐标系下的心形线,由两个函数表达式构成,但在利用几何画板作图时请务必将角度单位从默认的度改为弧度。
勒内·笛卡尔(Rene Descartes,公元1596年3月31日—公元1650年2月11日),出生于法国安德尔-卢瓦尔省的图赖讷拉海(现改名为笛卡尔以纪念),逝世于瑞典斯德哥尔摩,法国着名哲学家、物理学家、数学家、神学家。
称17世纪的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。他创立了着名的平面直角坐标系。
传说,当年52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。笛卡尔在给克里斯汀寄出第十三封信后就气绝身亡了,这第十三封信内容只有短短的一个公式:r=a(1-sinθ)。
公主看到后,立即明了恋人的意图,她马上着手把方程的图形画出来,看到图形,她开心极了,她知道恋人仍然爱着她,原来方程的图形是一颗心的形状。这也就是着名的“心形线”。
二、笛卡尔心形线公式是什么?
笛卡尔心形线公式是什么:水平方向:r=a (1-cosθ)或r=a (1+cosθ) (a>0)或垂直方向:r=a (1-sinθ)或r=a (1+sinθ) (a>0)。
笛卡尔最为世人熟知的是其作为数学家的成就。他于1637年发明了现代数学的基础工具之一——坐标系,将几何和代数相结合,创立了解析几何学。同时,他也推导出了笛卡尔定理等几何学公式。值得一提的是,传说著名的心形线方程也是由笛卡尔提出的。
笛卡尔坐标系
笛卡尔坐标系就是直角坐标系和斜坐标系的统称。相交于原点的两条数轴,构成了平面仿射坐标系。如两条数轴上的度量单位相等,则称此仿射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。
仿射坐标系和笛卡尔坐标系平面向空间的推广:相交于原点的三条不共面的数轴构成空间的仿射坐标系。三条数轴上度量单位相等的仿射坐标系被称为空间笛卡尔坐标系。三条数轴互相垂直的笛卡尔坐标系被称为空间笛卡尔直角坐标系,否则被称为空间笛卡尔斜角坐标系。
以上内容参考:百度百科——笛卡尔坐标系
三、笛卡尔的爱心函数是什么?
r=a(1-sinθ)。
笛卡尔二维坐标系里的桃心公式:r=a(1-sinθ)。
注意:
传说,当年52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。笛卡尔在给克里斯汀寄出第十三封信后就气绝身亡了,这第十三封信内容只有短短的一个公式:r=a(1-sinθ)。
公主看到后,立即明了恋人的意图,她马上着手把方程的图形画出来,看到图形,她开心极了,她知道恋人仍然爱着她,原来方程的图形是一颗心的形状。这也就是着名的“心形线”。